CS 70 Discrete Mathematics and Probability Theory Summer 2017 Lu, Moulos, and Tang DIS 1A

1 Set Operations

- \mathbb{R} , the set of real numbers
- \mathbb{Q} , the set of rational numbers: $\{a/b : a, b \in \mathbb{Z} \land b \neq 0\}$
- \mathbb{Z} , the set of integers: $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- \mathbb{N} , the set of natural numbers: $\{0, 1, 2, 3, \ldots\}$
- (a) Given a set $A = \{1, 2, 3, 4\}$, what is $\mathscr{P}(A)$ (Power Set)?
- (b) Given a generic set B, how do you describe 𝒫(B) using set comprehension notation? (Set Comprehension is {x | x ∈ A}.)
- (c) What is $\mathbb{R} \cap \mathscr{P}(A)$?
- (d) What is $\mathbb{R} \cap \mathbb{Z}$?
- (e) What is $\mathbb{N} \cup \mathbb{Q}$?
- (f) What is $\mathbb{R} \setminus \mathbb{Q}$?
- (g) If $S \subseteq T$, what is $S \setminus T$?

2 Writing in Propositional Logic

For each of the following sentences, translate the sentence into propositional logic using the notation introduced in class, and write its negation.

(a) The square of a nonzero integer is positive.

- (b) There are no integer solutions to the equation $x^2 y^2 = 10$.
- (c) There is one and only one real solution to the equation $x^3 + x + 1 = 0$.
- (d) For any two distinct real numbers, we can find a rational number in between them.

3 Implication

Which of the following implications are true? Give a counterexample for each false assertion.

(a)
$$\forall x, \forall y, P(x, y) \implies \forall y, \forall x, P(x, y).$$

(b)
$$\exists x, \exists y, P(x, y) \implies \exists y, \exists x, P(x, y).$$

(c)
$$\forall x, \exists y, P(x, y) \implies \exists y, \forall x, P(x, y).$$

(d)
$$\exists x, \forall y, P(x, y) \implies \forall y, \exists x, P(x, y).$$

- 4 Necessary and Sufficient Conditions
- (a) Given implication $A \implies B, A$ is a _____ condition for B.
- (b) Given implication $\neg A \implies \neg B$, *A* is a _____ condition for *B*.
- (c) Given implication $\neg B \implies \neg A, A$ is a _____ condition for *B*.
- (d) Given implication $B \implies A, A$ is a _____ condition for B.